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Dynamics of the depletion zone at a finite-sized imperfect trap in two dimensions:
Photobleaching experiments and simulations
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The kinetics of the growth of depletion zones around a static trap in an effective two-dimensional geometry
were studied experimentally with photobleaching of fluorescein dye by a focused laser beam. The phototrap
served as an imperfect trap with a finite size. The growth of the depletion zone was monitored by theu
distance, defined as the distance from the trap to the point where the concentration of the reactants reaches a
given arbitrary fractionu (0,u,1) of its initial value, which could be directly measured experimentally. At
the asymptotic limit, the results confirm the theoretical nonuniversaltu/2 scaling behavior for theu distance. We
also find an effect of fast expansion at an early time of the depletion zone inside an imperfect trap. Both the
imperfect trapping strength and the finite trap size are found to control the early-time behavior, while the trap
shape does not much affect the dynamics of theu distance. A dimensional crossover was found for a perfect
trap with a finite radius, when theu distance was measured from the trap surface. The actual trapping efficiency
was determined for different laser powers of the phototrap. Results are supported by analytical equations, exact
enumerations, and Monte Carlo simulations.
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I. INTRODUCTION

The trapping reaction in a diffusion-controlled enviro
ment has been studied extensively in the past few dec
@1–24#. In this reaction, which can be formulated
A1T→T, a diffusing speciesA is annihilated upon collision
with a trapT with a certain trapping probability. This proces
corresponds to the original Smoluchowski work on coagu
tion @25#, which became the basis for classical reaction
netics theory. Despite the simplicity of the process, the tr
ping reaction has been one of the most puzzling problem
transport in low-dimensional systems, with many open qu
tions still remaining. Many variations are possible in t
trapping problem, such as the number of traps, the trap
bility, or the trapping strength. Previous studies on the tr
ping reaction in low dimensions include a variety of phy
cal, chemical, or biological processes, such as exc
annihilation in crystals embedded in porous membranes
Vycor glass@2# and the catalytic oxidation of glucose by th
enzyme glucose oxidase@3#. The scale of trapping reaction
in nature ranges from the atomic level, e.g., electron-h
recombination, to the global level, e.g., the atmosphe
ozone depletion.

It is well known that the kinetic laws of diffusion-limited
reactions in low dimensions are significantly differe
@1–24,26–32# from conventional rate laws found in man
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textbooks@33#. Such anomalous kinetics originates from t
inefficient diffusive mixing, which generates the se
segregation of reactants in time. In the trapping reaction
low dimensions, the occurrence ofA-T reactions creates a
zone of depletion around the trap, which is another form
self-segregation of reactants. A number of studies@7–13#
have been devoted to the problem of the depletion zon
the vicinity of a single trap.

Among many possible quantities to characterize the
namics of the depletion zone, theu distance@10# is a quantity
readily observed by experiment. Theu distancer u is defined
as the distance from the trapT to the point where the con
centration of the reactantsA reaches a given arbitrary frac
tion u (0,u,1) of its initial value. This can be formulate
as

c~r u ,t !5uc0 , ~1!

wherec(r ,t) is the concentration ofA particles at distancer
at time t, starting from an initial concentrationc0 at time
t50.

In one dimension, theu distance has been shown, b
theory@10# and experiment@8#, to increase asymptotically a
t1/2. In three dimensions, the depletion zone stays locali
in the asymptotic time limit and hence theu distance is time
independent. The two-dimensional case produces the m
intriguing result of nonuniversality for theu distance, which
is theoretically predicted to scale astu/2 at the long-time
limit, namely, it depends on the seemingly arbitrary choice
u @10,12#.

In this study, we investigate, by experiment and numeri
calculations, a simple case of the trapping problem with
single, static trap surrounded by many diffusing particles
an effective two-dimensional~2D! geometry. Our goal is to
provide experimental evidence for nonuniversality in 2D
the long-time limit. The experiment uses a laser beam a
d-
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phototrap, focused onto a sample plane to produce an e
tive 2D environment. The early-time behavior of theu dis-
tance, which has not been studied previously to our kno
edge, is also studied for different trap strengths and t
sizes. Monte Carlo simulations and exact enumerations
performed to support the experimental results. We find t
the anomalous early-time behavior exists only for a trap w
both an imperfect trap strength and a finite size. An intere
ing observation of a crossover behavior from 1D to 2D
the u distance, when measured from the trap surface, is
presented and discussed. Finally, the trapping efficiencyk is
determined for different laser powers of the phototrap in
given experiment.

When a finite-sized trap is perfect, the depletion zone
obviously measured from its boundary, as no particles
exist inside. However, when the trap is imperfect, partic
can survive within the trap. Then the ‘‘depletion zone’’
actually both inside and outside the imperfect trap perime
In this case, measurement of the depletion from thecenterof
the trap is a reasonable choice as well.

Figure 1 shows schematic concentration profiles for p
ticles at traps with different size and trapping strength. T
insets are the schematics of the corresponding trap inten
profiles. Figure 1~a! represents a point trap with its trappin
strength either perfect~case I! or imperfect~case II!. Simi-
larly, Fig. 1~b! illustrates a perfect~case I! and an imperfect
~case II! trapping strength for a nonzero, finite-sized trap. F
a nonzero, finite-sized trap with an imperfect trappi
strength@case II in Fig. 1~b!#, the trap intensity profile can
take many different shapes, a few examples of which
shown in the inset. The perfect trap cases~cases I in Fig. 1!
have been well studied so far@7,10,11#. However, studies on
the system with an imperfect trap~cases II in Fig. 1! are

0 r
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I II
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FIG. 1. Schematic concentration profiles for particles at diff
ent types of traps. The profiles of the trapping probability for d
ferent traps are shown in the inset. Traps are either a single poin
shown in ~a!, or nonzero, finite sized, as shown in~b!, with the
trapping strength either perfect~case I! or imperfect~case II!. For a
nonzero, finite-sized trap with an imperfect trapping strength@case
II in 1~b!#, the trap intensity profile can take many different shap
some of which are shown in the inset.
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limited @9,12#, especially for finite trap sizes and in the earl
time range inside the finite-sized trap@case II in Fig. 1~b!#.
This work focuses on the behavior of the depletion zone
finite-sized, imperfect trap in 2D as in case II in Fig. 1~b! and
its consequences. We find below that the unique shape o
concentration profile profoundly affects the dynamics of t
depletion zone at early times.

II. METHODS

A. Experimental setup and procedure

The experiment is the photobleaching of fluorescein d
molecules in a buffer solution using a focused laser be
The photobleaching occurs inside a small gap between
parallel microscope slides with dimensions 75325
31 mm3. Two optical fibers with a diameter of 150mm are
inserted as spacers between the two parallel microsc
slides to produce a small gap with a thickness of 150mm,
which serves as a reaction vessel in this experiment. To m
mize the possibility of finite-size effects in the experime
we positioned the two spacers as far apart from each othe
possible between the slides, i.e., 70 mm apart in this c
Fluorescein was chosen for this experiment because the
ecule is well known to be easily photobleached by inten
excitation light sources.

The aqueous solution of fluorescein was prepared i
phosphate buffer solution atpH 8.5 with a concentration of
731025M . Spectroscopic grade fluorescein dye was p
chased from Aldrich and used without further purificatio
The phosphate buffer solution was prepared by dissolv
monobasic and dibasic potassium phosphate in triply
tilled water. The buffer solution was used to increase
solubility of the fluorescein as well as to prevent any pote
tial pH change of the solution during the photobleachi
process. The aqueous fluorescein solution was injected
the 150mm gap between two parallel slides using a gla
pipet. After the sample was injected, a sealant~Krytox, Du-
Pont Co.! was applied to the edges of the slides to prev
evaporation of the sample solution during the data acqu
tion.

A sketch of the setup is shown in Fig. 2~a!. A laser beam
~see below!, focused into a cylindrical shape to produce
effectively two-dimensional environment with a circular tra
cross section on the sample plane, is introduced from ab
the sample chamber to photobleach the dye molecules.
size of the focused laser beam on the sample plane is
proximately 60–80mm in radius. Two different laser power
have been used to check the effect of the trap strength, on
12 mW from a 488 nm beam out of an air-cooled Ar-ion las
~Ion Laser Technology, model no. 5490 AWC-0!, and the
other at 130 mW at 430 nm out of a frequency doub
~Spectra-Physics, model no. GWU-23FS! coupled with a
femtosecond Ti-sapphire laser~Spectra-Physics, Tsunam
model no. 3941-L1S!. Another light source at 48065 nm
with approximately 1 in. diameter from a mercury lam
~Ushio, model no. USH-102D!, illuminating from below,
was used to probe the progress of the photobleaching.
power density of the probe beam is less than 0.1% of tha
the photobleaching laser beams, so the effect of photoble
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DYNAMICS OF THE DEPLETION ZONE AT A FINITE- . . . PHYSICAL REVIEW E 68, 061102 ~2003!
ing by the probe beam can be neglected during the typ
time scale of the experiment. Two mechanical shutters,
stalled in front of the light sources, operate out of phase
that the photobleaching beam and the probe beam are illu
nating the sample alternately in time.

The images of fluorescence emission from the sam
were collected at different times, using a charge-coupled
vice ~CCD! camera~Spectra Source Instruments, model T
leris 2 12/16! equipped with a macro lens~Nikon, AF Macro
60 mm f 2.8, 1:1!. The scale of the image is 131 cm2 with a
5123512 pixel resolution. Typical integration time of th
CCD is 4 s for each image. The dye molecules becomein-
visible to the detector when photobleached, resulting in
drop in the fluorescence intensity.

The progress of the photobleaching was followed for 1
in a typical experiment. The entire experiment is perform
at room temperature. A similar experimental setup has b

FIG. 2. ~a! A schematic diagram of the experimental setup.~b! A
plot of u distance vs time from experiment. Theu distance is mea-
sured atu50.4, 0.6, and 0.8. Note that theu distance, growing as
tu/2 asymptotically, shows a nonuniversal behavior. Also note th
for u50.4 and 0.6 at early times, theu distance near the center o
the trap grows at a much faster rate before converging to
asymptotic rate.
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used recently to study the trapping reaction in one dimens
@8#.

B. Monte Carlo simulations

The simulation calculations are performed using we
known numerical techniques for random walks and for tra
ping on a 2D square lattice with a single trap site position
in the center. The trapping probabilityp for this site is a
parameter varying from 0 to 1, i.e., 0,p,1. All other sites
are equivalent sites, while only the single trap site has
trapping properties. A number of particles are randomly p
sitioned on the lattice, with a given concentrationc0 . No
more than one particle is allowed to occupy a given site
any moment. No particles are allowed initially to land on t
trap site.

The diffusion is modeled by random walks of all particle
which are independent of each other. We use cyclic bound
conditions at the ends of the lattice. If a particle is chosen
move to a site that is already occupied by another parti
then this move is not allowed. If a particle happens to occu
the middle~trap! site during a move, then it is trapped with
probability p. This is done as usual by drawing a rando
number and comparing this number withp. If the particle is
trapped, then it is removed irreversibly from the lattice, an
therefore, the particle concentration on the lattice is reduc
If it is decided that it is not to be trapped, then the partic
remains on the trap site and continues to perform its rand
walk, similarly to all other particles and sites.

The quantity that we monitor is the number of particles
a distancer from the origin~i.e., from the trap site!. Since we
use a discrete two-dimensional square lattice topology,
used the quantityu i u1u j u as the value ofr, for the position at
~i,j! on the lattice. For a fixed time step, we count the to
number of particles at each distance on the lattice. Then
number of particles is normalized into a concentration
measure theu distance. The data are the average of 20 0
runs, unless mentioned otherwise.

C. Recursion formula calculation

The following recursion formula is used to numerical
calculate the exact particle concentrationc( i , j ;t) at a lattice
position ~i,j! at a time stept on a two-dimensional squar
lattice, where an imperfect trap of radiusa with a trapping
probability p is located in the middle of the lattice:

c~ i , j ;t !5@c~ i 21,j ;t21!1c~ i 11,j ;t21!1c~ i , j 21;t21!

1c~ i , j 11;t21!#/4, ~2a!

with the initial condition of uniform spatial distribution o
particles

c~ i , j ;t50!5c0 , ~2b!

and the trapping boundary condition

t,

e

2-3
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TABLE I. Recursion relationships ofc( i , j ;t), a reactant concentration at position~i,j! ( i , j 5 integer) at timet ~50, 1, 2,...!, in exact 2D
and quasi-2D. We assume the space and time to be discrete, and all the particles are forced to move randomly at each time ste
location is at~0, 0! in exact 2D, and~0, 0,k! (k5 integer) in quasi-2D. IC denotes initial condition, BC boundary condition;p is the trapping
probability. The forms of the BC for imperfect traps reflect the radial symmetry around~0,0!.

System Recursion relation IC,c( i , j ;0) BC, c(0,0;t), tÞ0

Exact 2D C( i , j ;t)5@c( i 21,j ;t21)1c( i 11,j ;t21)
1c( i , j 11;t21)1c( i , j 21;t21)#/4

c0 ~const! Perfect 0
Imperfect (12p)@c(1,0;t21)#

Quasi-2D C( i , j ;t)5@c( i 21,j ;t21)
1c( i 11,j ;t21)1c( i , j 11;t21)

1c( i , j 21;t21)#/61c( i , j ;t21)/3

c0 ~const! Perfect 0

Imperfect (12p)@2c(1,0;t21)1c(0,0;t21)#/3
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c~ i , j ;t !5~12p!@c~ i 21,j ;t21!1c~ i 11,j ;t21!

1c~ i , j 21;t21!1c~ i , j 11;t21!#/4

for u i u1u j u<a, ~2c!

wherei, j are integers, andt50,1,2,... . Equation~2a! implies
a forced random walk on a 2D lattice, i.e., the particle co
centration at a position~i,j! at time stept solely depends on
the concentrations at the four nearest neighbor location
the previous time stept21, with each nearest neighbor co
tributing an equal probability of 1/4.

The recursion formula in quasi-2D on a cubic lattic
shown in Table I, can be derived in a similar way. ‘‘Qua
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2D’’ is a 3D infinite cubic lattice on which particles hav
coordinates (i , j ,k), and a trap is located on an axis along t
k direction. Due to the symmetry along thek direction, only
two indices~i,j! are needed to represent the concentration
quasi-2D. More details on the derivation of the recursi
formula are described elsewhere@8,34#.

D. Analytical approach

The exact solution for the diffusion equation governi
the diffusion of A particles in a two-dimensional regio
bounded internally by the trapping circler 5a is given by
@12,34#
c~r ,t !52
2kc0

p E
0

`

e2Dtu2 J0~ru !@uY~au!1kY0~au!#2Y0~ru !@uJ1~au!1kJ0~au!#

@uY1~au!1kY0~au!#21@uJ1~au!1kJ0~au!#2 u21du, ~3!
-
e to
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ach
whereJo(z), J1(z), Y0(z), andY1(z) are Bessel functions
c0 is the bulk concentration,D is the diffusion coefficient,a
is the radius of the trap, andk is a parameter representing th
strength of the trap, ranging from 0 for to a total reflecti
~i.e., no trapping! to ` for a total absorption~i.e., perfect
trapping!.

The approximate analytical expressions for the concen
tion profile at the short- and long-time limits have been d
rived @12# from Eq. ~3!, from which one can obtain theu
distance. For the perfect trap, with radiusa, it has been
shown@12# that, in the short-time limit,

c~r ,t !'c0F12S r

aD 1/2

erfcS r 2a

A4Dt
D 1¯G , ~4a!

and in the long-time limit,

c~r ,t !'2c0 lnS r

aD F 1

ln~4T!22g
2

g

@ ln~4T!22g#2 1¯G ,
~4b!

where T[Dt/a2 is the dimensionless time parameter, a
g50.57722... is Euler’s constant. We calculated the conc
a-
-

n-

tration profiles numerically from Eqs.~4a! and ~4b!, for an
arbitrary diffusion constantD51 and a trap radiusa51, and
then measured theu distance from the profiles. This ap
proach, with time and space being continuous, allows on
investigate the behavior of theu distance at an extremel
short time when the depletion zone is located in the vicin
of the trap boundary.

III. RESULTS AND DISCUSSION

A. Nonuniversal asymptotic behavior

A series of typical fluorescence images from the ph
tobleaching experiments are presented elsewhere@13#. The
growth of the depletion zone is detected by the decreas
the fluorescence intensity around the trap in time. After ba
ground subtraction and division by the initial fluorescen
intensity, the fluorescence intensity along a single arbitr
pixel line through the trap center is converted into the spa
profile of the fraction of reactant molecules remaining
each time. These are presented in@13#. The u distance was
measured directly from such a spatial density profile at e
time.
2-4
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Figure 2~b! shows theu distance vs time on a logarithmi
scale, measured atu50.4, 0.6, and 0.8, from the experime
tal data. The solid lines in the plot represent the theoret
asymptotic slopes of theu distance for a perfect trap in 2D
i.e., the slopes ofu/2. The experimental data fit very we
with the theoretical slopes in the long-time limit. All the da
seem to reach the asymptotic limit after;300 s under the
present experimental conditions. This result confirms that
u distances at differentu values develop with different time
scaling in 2D geometry@10,11#.

The nonuniversal scaling of theu distance in 2D trapping
implies a slower widening of the depletion zone for smalleu
values, resulting in a curved shape of the density fract
profile, which is getting very narrow at lower fraction
around the trap, as shown in Fig. 3. This is very differe
from the case of 1D trapping, where the shape of the frac
profile is much broader and nearly straight near the trap@8#,
since the depletion zone grows at a uniform rate oft1/2 for all
u values in 1D. In other words, the depletion zone opens
faster in 1D than in 2D for the trapping process, and
difference is more pronounced near the trap at a lower d
sity fraction at a given time, where the diffusing particles
2D are not depleted as fast as in 1D.

We note that there is a finite amount of dye molecu
inside the trap at all times in our experiment, because
phototrap with a finite laser power cannot bleach all the d
molecules instantly. This implies that the phototrap in o
experiment is a finite-sized imperfect trap, which allows t
dye molecules to escape at a certain, finite probability. T
excellent match of the experimental data with the theory
the long-time range in Fig. 2~b! suggests that in the
asymptotic limit the theory for the system with a perfect tr
is also valid for the one with a finite-sized, imperfect tra
This is also borne out by simulations below.
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0.0

0.2

0.4

0.6

0.8

1.0

10
4

10
3

10
2

10

1

R
el

at
iv

e
C

on
ce

nt
ra

tio
n

Distance from the Trap (lattice units)

FIG. 3. Spatial profiles of the fraction of initial particle conce
trations at select time stepst51, 10, 102, 103, and 104 for a perfect
point trap in exact 2D, obtained from a Monte Carlo simulatio
The trap is a single point located at the center of a 2013201 square
lattice, and the initial concentration of particles is 0.25. Cyc
boundary conditions are used and the data are the average of 2
runs. The initial (t50) concentration is normalized to unity.
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B. Anomalous early-time behavior

Figure 2~b! also shows that, for short times near the tr
origin, theu distance grows faster than the asymptotic r
for smalleru values~i.e., atu50.4 and 0.6!. It also seems
that there is no well-defined time scaling for this behavior.
our knowledge, such a fast-growing, early-time behavior
not been predicted or reported previously. Noting that
experimental phototrap has properties different from the t
oretical perfect point trap model, such as the imperfect t
strength, finite trap size, and nonuniform trap strength ins
the trap, we conjecture that the apparently anomalous ea
time behavior from our experiment comes from the imp
fect nature of the phototrap. We investigate this behav
systematically by using a set of numerical simulations w
various techniques, as follows.

.

000

FIG. 4. Plots ofu distance vs time from Monte Carlo simula
tions,~a! for a perfect point trap in exact 2D, atu50.2, 0.4, 0.6, and
0.8, obtained from the profiles in Fig. 3, and~b! for an imperfect
point trap with a trapping probabilityp50.5, in exact 2D, at
u50.4, 0.6, and 0.8. Solid lines represent the theoretical, non
versal slope ofu/2 at the asymptotic limit. Both results show exce
lent agreement with the theoretical values at long times. Note
the high-slope, early-time behavior near the trap center for lo
u’s, which was observed from experiment, is reproduced foru
50.4 in the case of the imperfect point trap only, while the ear
time deviation is completely missing in the perfect point trap ca
The initial (t50) concentration is normalized to unity.
2-5
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1. Effect of trap strength

Figure 3 shows the normalized concentration profiles a
function of the distance from the trap at the origin, obtain
from a Monte Carlo simulation. A trap, with a trapping pro
ability 1, is located at a single lattice site on a 2013201
square lattice, while everywhere else on the lattice ther
zero trapping probability. The initial concentration of the p
ticles is 0.25. The data in the plot represent the results at
stepst51, 10, 102, 103, and 104. The particle concentration
is zero at the origin at all times, reflecting the perfect tra
ping. We call this trap apoint trap, because it occupies on
one lattice site. We obtained similar concentration profi

FIG. 5. ~a! Spatial concentration profiles at a fixed time st
t520, for different trapping probabilities, from recursion formu
calculations, for a point trap in exact 2D. A point trap with a co
responding trapping probability is located at the center of a
square lattice. The horizontal axis represents the distance from
trap center. As the trapping probability increases, the particle c
centration becomes lower at and near the trap, leading to
broader depletion zone at a given time. The initial (t50) concen-
tration is normalized to unity.~b! A plot of u distance vs time, for
different trapping probabilities, at a fixedu value of 0.7, measured
from the concentration profiles in~a!. The dashed line represents th
theoretical asymptotic slope 0.35. Note that the high-slope, ea
time behavior appears more clearly as the trapping probability
comes smaller.
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for the case of the imperfect point trap from the Monte Ca
simulations, in which the only apparent difference is the no
zero, finite reactant concentration at the origin at all time

We measured theu-distance atu50.2, 0.4, 0.6, and 0.8
from the profiles in Fig. 3~and many more profiles at othe
time steps not shown!, which are represented as symbols
Fig. 4~a!. The solid lines are the theoretical slopes ofu/2 at
the asymptotic limit. Figure 4~b! is a similar plot for an im-
perfect point trap with a trapping probability 0.5 at the tr
and zero elsewhere. Both cases, regardless of the differ
in trap strength, match the theoretical asymptotic scal
very well in the long-time limit, which is consistent with th
experimental result in Fig. 2~b!. Furthermore, Fig. 4 shows
directly that the fast-growing, early-time behavior is repr
duced only for the imperfect point trap. For the perfect po
trap in Fig. 4~a!, the u distance remains almost constant
the first few time steps, then grows faster gradually, until
asymptotic growth rate is reached. In this case, the early-t
slope is always smaller than the asymptotic one, and the
no region where the depletion zone grows at a faster
than the asymptotic one. On the other hand, for the imper
point trap in Fig. 4~b!, theu distance grows at a much highe
rate than the asymptotic one, foru50.4 at early times, and
then gradually slows down to the asymptotic rate in the lo
time range. Such a fast, early-time behavior does not e
for the higheru values in Fig. 4~b!, which also matches with
the experimental observation in Fig. 2~b!. This result sug-
gests that the trap strength as well as theu value is an im-
portant factor in the early-time growth of the depletion zon

To study the effect of trap strength on the growth of t
depletion zone more systematically, we performed numer
calculations for various trap strengths, using the recurs
formula in Table I. Figure 5~a! shows the concentration pro
files for different trapping probabilities, at a fixed time ste
t520, for a system where a trap is located at a single lat

he
n-
e

y-
e-

FIG. 6. A plot ofu distance vs time, for different trap sizes, at
fixed u value of 0.4, from recursion formula calculations. Solid lin
represents the upper limit radius of each trap. A trap with radiusa is
located on a 2D square lattice. The trapping probability is unifo
at p50.5 inside the trap, for all trap sizes. Trap size ofa51 rep-
resents a point trap. Note that the high-slope, early-time beha
appears only inside the trap for all trap sizes.
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site on a 2D square lattice. As expected, the particle con
tration becomes lower in the vicinity of the trap, as the tra
ping strength increases, at a given time. Figure 5~b! shows
the u distance measured atu50.7 from these concentratio
profiles. All u distances from different trap strengths rea
the asymptotic scaling oft0.35, confirming our earlier conclu-
sion that the asymptotic behavior does not depend on the
strength. However, we note that the fast-growing, early-ti
behavior appears only at the lower trapping probabiliti
i.e., for trapping probabilities below 0.5 in Fig. 5~b!. Traps
with higher probabilities do not show such a fast-growin
early-time behavior, even though their trapping probability
less than 1. This result suggests that the trap strength ca
completely explain the existence of the fast, early-time
havior. We find, below, that the trap size is another fac
which affects the early-time dynamics of the depletion zo
The difference foru50.6 in the early-time range betwee
Figs. 2~b! and 4~b! can be understood in terms of such
effect.

2. Effect of trap size

With a closer look at the values of theu distance in Fig.
2~b!, one realizes that the fast-growing, early-time behav
occurs roughly at au distance below 3–4 pixels. Noting tha
the radius of the phototraps in our experiments is appro
mately 60–80mm, which corresponds to 3–4 CCD pixel
one finds that such an anomalous early-time behavior oc
only insidethe trap. A similar trend is found in the numeric
results in Figs. 4~b! and 5~b!, where only thoseu distances
smaller than one lattice constant show the fast-growi
early-time behavior. This observation suggests that the
size, too, should play an important role in the anomalo
early-time behavior. Although the traps in Figs. 4~b! and 5~b!
occupy only a single lattice point, and are thus calledpoint
traps, it is important to realize that the size of such a po
trap is not necessarily zero, because the space is discre
the lattice model. In fact, it is reasonable to assume that
effective radius of a point trap is about half a lattice distan
in a discrete lattice space. Furthermore, the effective ra
of a point trap in lattice space may also depend on the
strength. Hence, some of theu distances smaller than 1 i
Figs. 4~b! and 5~b! can be regarded as a measure of
depletion zoneinside the trap.

To support the above argument, we carried out numer
calculations using the recursion formula, extending the t
size. The systems examined are traps with various radii, w
a uniform trapping probability ofp50.5 inside the trap, lo-
cated on a 2D square lattice. Figure 6 summarizes the res
The figure presents the time evolution of theu distance for
different trap sizes, measured at a fixedu value of 0.4, from
the recursion formula calculations. Solid lines represent
upper limit of the radius of each trap studied. The upper lim
radius of 1 represents a point trap, for which the trap rad
lies between 0 and 1, as explained in the previous paragr
It clearly shows that the fast, early-time behavior appe
only below the upper limit of the trap radius. It confirms th
the high-slope, early-time growth of the depletion zone
curs only inside the trap.
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The results so far suggest that the fast, early-time gro
of the depletion zone occurs in systems with an imperfe
finite-sized trap, inside which a certain fraction of particl
can exist. As the depletion zone at a certain fraction open
to the ‘‘outside’’ of the trap, theu distance at that specific
fraction becomes bigger than the trap radius, and its gro
slows down to converge to the asymptotic rate. Convers
one can determine the effective size of the trap by measu
that u distance where the transition occurs from the ear
time regime of fast expansion of the depletion zone to
asymptotic regime. In Fig. 4~b!, for example, the transition
from the higher slope to the asymptotic slope occurs atu
distance around 0.3, suggesting the ‘‘effective’’ trap size
the point trap in this case to be approximately 0.3.

3. Effect of trap shape

The phototrap in our experiments, created by focusing
laser beam, has a nonuniform intensity distribution across
trap area, most likely with a Gaussian profile. As a fin
check on the imperfect nature of the phototrap, we exami
the effect of the trap shape, i.e., the distribution of the tr
ping probability across the trap area, on the dynamics of
u distance, using the calculations via recursion formula. F
ures 7~a!–7~d! show the concentration profiles obtained fro
the exact enumerations for different trap shapes. The in
shows the trap shape. Figure 7~a! is the simplest ‘‘point’’
trap, with p, the trapping probability, being 0.5 at the tra
and 0 elsewhere. Figures 7~b!–7~d! represent a ‘‘Lorentzian’’
trap, a ‘‘Gaussian’’ trap, and a ‘‘rectangular’’ trap, respe
tively. Details of the distribution of the trapping probabilit
for each trap are described in the figure caption. By comp
ing the concentration profiles from different trap shapes, o
can notice a common trend: the concentration profiles ins
the trap resemble the shape of the trap at early times. T
as the concentration inside the trap decreases in time
profiles become convex@see Fig. 7~c! for the definition of the
curvature#, which is obviously the result of the diffusion o
the particles from the outside into the trap. In this sense
may call the early-time range trapping dominant, and
long-time range diffusion dominant. This is a special case
reaction- vs diffusion-limited chemical kinetics@14,15#.

When the trap shape is concave, e.g., the Lorentzian
in Fig. 7~b!, the curvature of the concentration profile insid
the trap changes from concave to convex in time. We fi
that such a curvature change in concentration profile does
affect the dynamics of theu distance. In fact, we find that th
dynamics of theu distance is not affected by the details
the shape of the trap at all. Theu distance measured from
Fig. 7~d! is shown in Fig. 8, where the fast-growing, earl
time regime appears inside the trap, just like the results
Figs. 2~b!, 4~b!, and 5~b!. Similar results were obtained from
the other trap shapes in Fig. 7.

4. Crossover from 1D to 2D

Figure 9~a! presents theu distance for a perfect trap with
a radius 1, in a continuous 2D space, obtained from the
merical calculations using Eqs.~4a! and ~4b!. Solid lines
2-7
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FIG. 7. Concentration profiles for different trap shapes. The trap shape is shown as an inset for each profile.~a! A point trap, with a
trapping probabilityp50.5 at a single lattice site;~b! a Lorentzian trap, wherep50.5 at the peak position, 0.17 at the nearest neighbor,
0.050 at the second nearest neighbor;~c! a Gaussian trap, wherep50.5 at the peak position, 0.39 at the nearest neighbor, 0.184 at the se
nearest neighbor, and 0.053 at the third nearest neighbor, and~d! a rectangular trap, wherep50.5 at all positions inside the trap. The trappin
probability is zero elsewhere. The initial (t50) concentration is normalized to unity.
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FIG. 8. A plot of u distance vs time for the rectangular tra
measured from the concentration profiles in Fig. 7~d!. Dashed lines
represent the theoretical slopes at the asymptotic time limit in
06110
represent the theoretical asymptotic time scaling in 2D.
expected, theu distance, which is always bigger than the tr
radius in this case, increases slowly in time, until it reach
the asymptotic slope ofu/2. There is no fast-growing, early
time behavior in this case, because the trap is perfect an
particle can survive inside the trap. However, when theu
distance is measured from the trap surface, instead of
center of the trap, we obtain an interesting result, as show
Fig. 9~b!. In this case, theu distance starts with a universa
1D scaling oft1/2 for all u’s at early times, before it crosse
over to a nonuniversal 2D scaling oftu/2. This result can be
interpreted as follows. At early times, when the particles
in the vicinity of a trap, they are affected by only a small pa
of the 2D trap surface, as if it was a 1D trap. In other wor
the particles, located at a much closer distance than the
of the trap~i.e., the distance from the particles to the tr
surface is much less than the trap size!, are not affected by
the entire shape of the trap. At later times, when the partic
are far enough from the trap~i.e., the distance from the par
ticles to the trap surface is much greater than the trap si!,
the 2D nature of the trap finally affects then, thus chang.
2-8
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the dynamics accordingly. This argument can be extende
the case of a spherical trap in 3D as well: the depletion z
will develop as for the 1D case, in the beginning near
trap surface, before it is eventually affected by the en
sphere and stops growing~3D!. This is a useful idea to ex
plain the early-time growth of the depletion zone outside
trap. We note that moving the origin of the coordinate syst
to the edge of the perfect trap system shows the crossov
a more transparent way. Obviously, for a perfect trap it is
edge that controls the trapping, with the center not play
any role.

According to the above argument, we can also predict
following: in a given trapping system, the crossover from 1
to 2D ~or 3D! occurs faster for largeru, because the largeru
distance~corresponding to the largeru at a given time!, is
affected by the entire trap faster than is the smalleru dis-
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FIG. 9. A plot of theu distance in the unit of the trap radiusa vs
dimensionless timeDt/a2 for the perfect trap with radiusa51, in
spatially and temporally continuous 2D, obtained from Eqs.~4a!
and ~4b!. The u distances are measured from~a! the center of the
trap, which reproduces the results from Monte Carlo simulati
and recursion formula calculations, or~b! the surface of the trap
which shows a dimensional crossover from 1D to 2D. The theo
ical asymptotic slopes for 2D are shown as solid lines, and for
as a dashed line.
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tance. This prediction can be readily verified from Fig. 9~b!,
i.e., the dimensionless crossover timeDtc /a2 is ;1023 for
u50.8, while it is;10 for u50.2.

IV. EXPERIMENTAL DETERMINATION
OF TRAPPING STRENGTH

As a practical application of this study, one can extract
value of the theoretical trapping efficiencyk @12# for the
laser phototrap used in the experiments. Trapping efficie
is a measure of the trap strength, ranging from zero for
trapping to infinity for a perfect trapping. Note that the tra
ping efficiencyk, with a dimension of~length!21, is the con-
tinuous analog of the trapping probabilityp, which varies
between 0 ~no trapping! and 1 ~perfect trapping!. The
reactant concentration at the trap surface depends only on
trapping efficiencyk @34#. Using the diffusion constan
of the reactant~in this case,D54.3731026 cm2 s21 for
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FIG. 10. ~a! A plot of the fractionu of the reactants at the tra
surface (us) vs Dt/a2, for various values ofka in 2D. Solid lines
represent the theoretical values from Eq.~3!. The experimental data
with different laser powers are shown as solid squares~12 mW! and
open circles~130 mW!. ~b! A plot of us vs ka at Dt/a256, from
~a!. The value ofka for each trapping laser power from exper
ments is determined, as shown by the arrows.
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fluorescein@35#!, the trap radiusa ~60–80mm!, and the con-
centrations measured experimentally at the trap surface,
can calculate the trapping efficiencyk for a given laser
power by comparing with the theoretical values of the re
tant concentrations at the trap surface, which can be obta
from Eq.~3!. Figure 10~a! is a plot of the concentration frac
tion at the trap surface (us) vs Dt/a2, for various theoretical
ka values and the experiments with fluorescein using diff
ent laser powers. Solid lines represent the theoretical va
calculated from Eq.~3!, and the experimental data with di
ferent laser powers for the phototrap are shown as s
squares~12 mW! and open circles~130 mW!. The experi-
mental data follow the theoretical trend very well. Figu
10~b! is a plot ofus vs ka at Dt/a256, from Fig. 10~a!. The
ka value for each laser power is determined to be 1.15 for
mW and 1.63 for 130 mW, respectively. Considering that
power density of the laser beam is calculated as 1.1 W/m2

for the 12 mW beam and 6.5 W/mm2 for the 130 mW beam,
at the focus on the sample plane, we note that the theore
trapping efficiencyk is not linearly proportional to the lase
power density.
. B

ev

pe

in

ic

it

.

06110
ne

-
ed

r-
es

id

2
e

al

V. SUMMARY

We present experimental evidence for the theoretica
predicted nonuniversality in the growth of the depletion zo
at the asymptotic limit in 2D. We find that the trap streng
does not affect the asymptotic behavior of theu distance. A
fast, early-time behavior is shown to exist inside a fini
sized trap with an imperfect trapping strength. The trap sh
does not seem to change the dynamics of theu distance. A
dimensional crossover was clearly observed when the or
of the u distance measurement was shifted from the t
center to the trap surface. The theoretical trapping efficie
was determined for different laser powers of the phototr
The results are consistent with numerical calculations us
various techniques.
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