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The kinetics of the growth of depletion zones around a static trap in an effective two-dimensional geometry
were studied experimentally with photobleaching of fluorescein dye by a focused laser beam. The phototrap
served as an imperfect trap with a finite size. The growth of the depletion zone was monitored éy the
distance, defined as the distance from the trap to the point where the concentration of the reactants reaches a
given arbitrary fractiord (0<< < 1) of its initial value, which could be directly measured experimentally. At
the asymptotic limit, the results confirm the theoretical nonunivef§ascaling behavior for thé distance. We
also find an effect of fast expansion at an early time of the depletion zone inside an imperfect trap. Both the
imperfect trapping strength and the finite trap size are found to control the early-time behavior, while the trap
shape does not much affect the dynamics of dliistance. A dimensional crossover was found for a perfect
trap with a finite radius, when thédistance was measured from the trap surface. The actual trapping efficiency
was determined for different laser powers of the phototrap. Results are supported by analytical equations, exact
enumerations, and Monte Carlo simulations.
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[. INTRODUCTION textbooks[33]. Such anomalous kinetics originates from the
inefficient diffusive mixing, which generates the self-
The trapping reaction in a diffusion-controlled environ- Se€gregation of reactants in time. In the trapping reaction in

ment has been studied extensively in the past few decadd@W dimensions, the occurrence 8T reactions creates a
[1-24]. In this reaction, which can be formulated asZON€ of depletion around the trap, which is another form of

A+T—T, a diffusing species is annihilated upon collision self-segregation of reactants. A number of studies13

with a trapT with a certain trapping probability. This process '[]haew\a/i(l:)i?\ﬁ; gf;%ﬁ%gég:pmblem of the depletion zone in

corresponds to the original Smoluchowski work on coagula- Among many possible quantities to characterize the dy-
tion [25], which became the basis for classical reaction Ki-namics of the depletion zone, tdedistancd 10] is a quantity
netics theory. Despite the simplicity of the process, the trapreadily observed by experiment. Thedistancer , is defined
ping reaction has been one of the most puzzling problems ofs the distance from the trapto the point where the con-
transport in low-dimensional systems, with many open quescentration of the reactants reaches a given arbitrary frac-
tions still remaining. Many variations are possible in thetion 9 (0<#<1) of its initial value. This can be formulated
trapping problem, such as the number of traps, the trap maas
bility, or the trapping strength. Previous studies on the trap-

; L ; ; ; ; . c(rg,t)=6cy, 2
ping reaction in low dimensions include a variety of physi 0 0
cal, chemical, or biological processes, such as excitoRyherec(r,t) is the concentration o particles at distance
annihilation in crystals embedded in porous membranes angk timet, starting from an initial concentratiog, at time
VWecor glass[2] and the catalytic oxidation of glucose by the =,
enzyme glucose oxida$8]. The scale of trapping reactions  |n one dimension, the distance has been shown, by
in nature ranges from the atomic level, e.g., electron-holeheory[10] and experimenii8], to increase asymptotically as
recombination, to the global level, e.g., the atmospheria’? In three dimensions, the depletion zone stays localized
ozone depletion. in the asymptotic time limit and hence tléaistance is time

It is well known that the kinetic laws of diffusion-limited independent. The two-dimensional case produces the most
reactions in low dimensions are significantly differentintriguing result of nonuniversality for thé distance, which
[1-24,26-32 from conventional rate laws found in many is theoretically predicted to scale @42 at the long-time
limit, namely, it depends on the seemingly arbitrary choice of

0[10,12.
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limited [9,12], especially for finite trap sizes and in the early-
time range inside the finite-sized tragase Il in Fig. 1b)].

This work focuses on the behavior of the depletion zone at a
finite-sized, imperfect trap in 2D as in case Il in Figbjland

its consequences. We find below that the unique shape of the
concentration profile profoundly affects the dynamics of the
depletion zone at early times.

Il. METHODS

A. Experimental setup and procedure

The experiment is the photobleaching of fluorescein dye
molecules in a buffer solution using a focused laser beam.
The photobleaching occurs inside a small gap between two
parallel microscope slides with dimensions X726
X 1 mn. Two optical fibers with a diameter of 15@m are
inserted as spacers between the two parallel microscope

FIG. 1. Schematic concentration profiles for particles at differ-slides to produce a small gap with a thickness of 150,
ent types of traps. The profiles of the trapping probability for dif- which serves as a reaction vessel in this experiment. To mini-
ferent traps are shown in the inset. Traps are either a single point, amize the possibility of finite-size effects in the experiment,
shown in(a), or nonzero, finite sized, as shown (h), with the  we positioned the two spacers as far apart from each other as
trapping strength either perfe@tase ) or imperfect(case I). Fora  possible between the slides, i.e., 70 mm apart in this case.
nonzero, finite-sized trap with an imperfect trapping streigéfse  Fluorescein was chosen for this experiment because the mol-
Ilin 1(b)], the trap intensity profile can take many different shapesecule is well known to be easily photobleached by intense
some of which are shown in the inset. excitation light sources.

The aqueous solution of fluorescein was prepared in a
phototrap, focused onto a sample plane to produce an effephosphate buffer solution @H 8.5 with a concentration of
tive 2D environment. The early-time behavior of thalis-  7x 10 °M. Spectroscopic grade fluorescein dye was pur-
tance, which has not been studied previously to our knowlehased from Aldrich and used without further purification.
edge, is also studied for different trap strengths and traghe phosphate buffer solution was prepared by dissolving
sizes. Monte Carlo simulations and exact enumerations am@onobasic and dibasic potassium phosphate in triply dis-
performed to support the experimental results. We find thatilled water. The buffer solution was used to increase the
the anomalous early-time behavior exists only for a trap withsolubility of the fluorescein as well as to prevent any poten-
both an imperfect trap strength and a finite size. An interesttial pH change of the solution during the photobleaching
ing observation of a crossover behavior from 1D to 2D forprocess. The aqueous fluorescein solution was injected into
the 6 distance, when measured from the trap surface, is alsthe 150 um gap between two parallel slides using a glass
presented and discussed. Finally, the trapping efficienisy  pipet. After the sample was injected, a sealdfrytox, Du-
determined for different laser powers of the phototrap in thePont Co) was applied to the edges of the slides to prevent
given experiment. evaporation of the sample solution during the data acquisi-

When a finite-sized trap is perfect, the depletion zone igion.
obviously measured from its boundary, as no particles can A sketch of the setup is shown in Fig(a2 A laser beam
exist inside. However, when the trap is imperfect, particledsee beloy, focused into a cylindrical shape to produce an
can survive within the trap. Then the “depletion zone” is effectively two-dimensional environment with a circular trap
actually both inside and outside the imperfect trap perimeteicross section on the sample plane, is introduced from above
In this case, measurement of the depletion fromctreterof ~ the sample chamber to photobleach the dye molecules. The
the trap is a reasonable choice as well. size of the focused laser beam on the sample plane is ap-

Figure 1 shows schematic concentration profiles for parproximately 60—8Qum in radius. Two different laser powers
ticles at traps with different size and trapping strength. Théhave been used to check the effect of the trap strength, one at
insets are the schematics of the corresponding trap intensiy2 mW from a 488 nm beam out of an air-cooled Ar-ion laser
profiles. Figure (a) represents a point trap with its trapping (lon Laser Technology, model no. 5490 AW(-@nd the
strength either perfedtase ) or imperfect(case I). Simi-  other at 130 mW at 430 nm out of a frequency doubler
larly, Fig. 1(b) illustrates a perfectcase ) and an imperfect (Spectra-Physics, model no. GWU-23F&oupled with a
(case 1) trapping strength for a nonzero, finite-sized trap. Forfemtosecond Ti-sapphire laséBpectra-Physics, Tsunami,

a nonzero, finite-sized trap with an imperfect trappingmodel no. 3941-L15 Another light source at 4805 nm
strength[case Il in Fig. 1b)], the trap intensity profile can with approximately 1 in. diameter from a mercury lamp
take many different shapes, a few examples of which ar¢Ushio, model no. USH-102D illuminating from below,
shown in the inset. The perfect trap caseases | in Fig. L was used to probe the progress of the photobleaching. The
have been well studied so fg#,10,11. However, studies on power density of the probe beam is less than 0.1% of that of
the system with an imperfect trajgases Il in Fig. 1 are  the photobleaching laser beams, so the effect of photobleach-
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FIG. 2. (a) A schematic diagram of the experimental sefipA
plot of 6 distance vs time from experiment. Tl#edistance is mea-
sured atd=0.4, 0.6, and 0.8. Note that thedistance, growing as
t?2 asymptotically, shows a nonuniversal behavior. Also note that
for #=0.4 and 0.6 at early times, thedistance near the center of
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used recently to study the trapping reaction in one dimension

[8].

B. Monte Carlo simulations

The simulation calculations are performed using well-
known numerical techniques for random walks and for trap-
ping on a 2D square lattice with a single trap site positioned
in the center. The trapping probability for this site is a
parameter varying from 0 to 1, i.e.<Qp<<1. All other sites
are equivalent sites, while only the single trap site has the
trapping properties. A number of particles are randomly po-
sitioned on the lattice, with a given concentratiof. No
more than one particle is allowed to occupy a given site at
any moment. No particles are allowed initially to land on the
trap site.

The diffusion is modeled by random walks of all particles,
which are independent of each other. We use cyclic boundary
conditions at the ends of the lattice. If a particle is chosen to
move to a site that is already occupied by another particle,
then this move is not allowed. If a particle happens to occupy
the middle(trap) site during a move, then it is trapped with a
probability p. This is done as usual by drawing a random
number and comparing this number withlf the particle is
trapped, then it is removed irreversibly from the lattice, and,
therefore, the particle concentration on the lattice is reduced.
If it is decided that it is not to be trapped, then the particle
remains on the trap site and continues to perform its random
walk, similarly to all other particles and sites.

The quantity that we monitor is the number of particles at
a distance from the origin(i.e., from the trap site Since we
use a discrete two-dimensional square lattice topology, we
used the quantit{i|+|j| as the value of, for the position at
(i,j) on the lattice. For a fixed time step, we count the total
number of particles at each distance on the lattice. Then the
number of particles is normalized into a concentration to
measure the distance. The data are the average of 20 000
runs, unless mentioned otherwise.

the trap grows at a much faster rate before converging to the C. Recursion formula calculation

asymptotic rate.

ing by the probe beam can be neglected during the typic

time scale of the experiment. Two mechanical shutters, inr

stalled in front of the light sources, operate out of phase, s

The following recursion formula is used to numerically

aEalculate the exact particle concentratidfi, j;t) at a lattice

osition (i,j) at a time ste on a two-dimensional square
attice, where an imperfect trap of radiaswith a trapping
robability p is located in the middle of the lattice:

that the photobleaching beam and the probe beam are illumi-

nating the sample alternately in time.

c(i,j;t)=[c(i—21,j;t=1)+c(i+1j;t—1)+c(i,j—21;t—1)

The images of fluorescence emission from the sample o
were collected at different times, using a charge-coupled de- +c(i,j+1;t=1)]/4, (28

vice (CCD) camera(Spectra Source Instruments, model Te-
leris 2 12/16 equipped with a macro leridlikon, AF Macro

60 mmf2.8, 1:1. The scale of the image isXl1 cn? with a
512x 512 pixel resolution. Typical integration time of the
CCD is 4 s for each image. The dye molecules became

with the initial condition of uniform spatial distribution of
particles

visible to the detector when photobleached, resulting in a

drop in the fluorescence intensity.

c(i,j;t=0)=cy, (2b)

The progress of the photobleaching was followed for 1 h

in a typical experiment. The entire experiment is performed
at room temperature. A similar experimental setup has beeand the trapping boundary condition
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TABLE I. Recursion relationships af(i,;t), a reactant concentration at positios) (i,j =integer) at timet (=0, 1, 2,..), in exact 2D
and quasi-2D. We assume the space and time to be discrete, and all the particles are forced to move randomly at each time step. The trap
location is at(0, 0) in exact 2D, and0, 0,k) (k=integer) in quasi-2D. IC denotes initial condition, BC boundary conditois;the trapping
probability. The forms of the BC for imperfect traps reflect the radial symmetry ar@og

System Recursion relation 1€(i,j;0) BC, c(0,03t), t#0
Exact 2D C(,j;t)=[c(i—21j;t—=1)+c(i+1,;t—1) Cq (consy Perfect 0
+c(i,j+1Lt=1)+c(i,j-1t=1)]/4 Imperfect (3=p)[c(1,0;t—1)]
Quasi-2D C(,j;t)=[c(i—1,j;t=1) co (consy Perfect 0
+c(i+1,j;t—21)+c(i,j+1;t—1)
+c(i,j—1;t—1)]/6+c(i,j;t—1)/3 Imperfect (I-p)[2c(1,0;t—1)+c(0,0;t—1)]/3
c(i,j;t)=(1—p)[c(i—1j;t—1)+c(i+1,;t—1) 2D” is a 3D infinite cubic lattice on which particles have

o o coordinatesi(,j,k), and a trap is located on an axis along the

te(i,j-Lt=1)+c(i,j+1t-1))/4 k direction. Due to the symmetry along tkedirection, only
for |i|+]j|<a, (20 two indices(i,j) are needed to represent the concentration in
quasi-2D. More details on the derivation of the recursion

wherei, j are integers, anti=0,1,2,... . Equatiof2a) implies ~ formula are described elsewhei@34].

a forced random walk on a 2D lattice, i.e., the particle con-
centration at a positiofi,j) at time stept solely depends on
the concentrations at the four nearest neighbor locations at
the previous time step— 1, with each nearest neighbor con-  The exact solution for the diffusion equation governing
tributing an equal probability of 1/4. the diffusion of A particles in a two-dimensional region

The recursion formula in quasi-2D on a cubic lattice, bounded internally by the trapping circte=a is given by
shown in Table I, can be derived in a similar way. “Quasi- [12,34]

D. Analytical approach

c(r,t)y=-—

2kCo fme_Dtuz Jo(rwfuv(au) + k¥o(aw] - Yo(ru)luy(aw + do@uwl . &)

[uYi(au)+ «kYo(au)]?+[udi(au) + xJo(au)]?

whereJ,(2), J1(2), Yo(2), andY,(z) are Bessel functions, tration profiles numerically from Eqg4a and (4b), for an

Co is the bulk concentratiorD) is the diffusion coefficienta  arbitrary diffusion constarld =1 and a trap radiua= 1, and

is the radius of the trap, andis a parameter representing the then measured thé distance from the profiles. This ap-
strength of the trap, ranging from 0 for to a total reflectionproach, with time and space being continuous, allows one to
(i.e., no trapping to « for a total absorptior(i.e., perfect investigate the behavior of the distance at an extremely

trapping. _ _ _ short time when the depletion zone is located in the vicinity
The approximate analytical expressions for the concentrapf the trap boundary.

tion profile at the short- and long-time limits have been de-

rived [12] from Eq. (3), from which one can obtain thé

distance. For the perfect trap, with radias it has been

shown[12] that, in the short-time limit, Ill. RESULTS AND DISCUSSION

A. Nonuniversal asymptotic behavior

1/2 _ . . .
~ _(r r-aj) . .. A series of typical fluorescence images from the pho-
c(r,t)~cg| 1 erf +eee, (4a) : :
a V4Dt tobleaching experiments are presented elsewhkE3g The

growth of the depletion zone is detected by the decrease in

and in the long-time limit, the fluorescence intensity around the trap in time. After back-
ground subtraction and division by the initial fluorescence

r

1 _ Y ‘... intensity, the fluorescence intensity along a single arbitrary
IN(4T)—2y [In(4T)—2v]? ’ pixel line through the trap center is converted into the spatial
(4b) profile of the fraction of reactant molecules remaining at
each time. These are presented 18]. The 6 distance was
where T=Dt/a? is the dimensionless time parameter, andmeasured directly from such a spatial density profile at each
vy=0.57722... is Euler’s constant. We calculated the concentime.

c(r,t)~2coln(a)
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Figure Zb) shows thed distance vs time on a logarithmic
scale, measured &&= 0.4, 0.6, and 0.8, from the experimen-
tal data. The solid lines in the plot represent the theoretica 0.1 E
asymptotic slopes of thé distance for a perfect trap in 2D, i
i.e., the slopes o#/2. The experimental data fit very well

o-distance (latti

with the theoretical slopes in the long-time limit. All the data - 10 o0 1000 10000
seem to reach the asymptotic limit aftet300 s under the Time (steps)
present experimental conditions. This result confirms that the

6 distances at differen# values develop with different time ~ FIG. 4. Plots ofé distance vs time from Monte Carlo simula-
scaling in 2D geometry10,11] tions, () for a perfect point trap in exact 2D, 8&=0.2, 0.4, 0.6, and

. : : : : 0.8, obtained from the profiles in Fig. 3, afio) for an imperfect
The nonuniversal scaling of thigdistance in 2D trapping point trap with a trapping probabiliyp—0.5. in exact 2D, at

implies a slower widening of the depletion zone for smadler 0=0.4, 0.6, and 0.8. Solid lines represent the theoretical, nonuni-

values, resulting in a curved shape of the density fraCtIor\‘/ersal slope o#/2 at the asymptotic limit. Both results show excel-

profile, which is getting very narrow at lower fractions, jent agreement with the theoretical values at long times. Note that
around the trap, as shown in Fig. 3. This is very differentthe high-siope, early-time behavior near the trap center for lower
from the case of 1D trapping, where the shape of the fractiows, which was observed from experiment, is reproduced dor
profile is much broader and nearly straight near the fBdp  =0.4 in the case of the imperfect point trap only, while the early-
since the depletion zone grows at a uniform rate'Gffor all time deviation is completely missing in the perfect point trap case.
6 values in 1D. In other words, the depletion zone opens ug he initial (t=0) concentration is normalized to unity.

faster in 1D than in 2D for the trapping process, and the
difference is more pronounced near the trap at a lower den-
sity fraction at a given time, where the diffusing particles in

2D are not depleted as fast as in 1D. for smaller ¢ values(i.e., at6=0.4 and 0.6 It also seems

. We note that there is a finite amount of dye moleculesy,,; yhere is no well-defined time scaling for this behavior. To

inside the trap at QII times in our experiment, because thg,, knowledge, such a fast-growing, early-time behavior has
phototrap with a finite laser power cannot bleach all the dyeyot been predicted or reported previously. Noting that the

molecules instantly. This implies that the phototrap in ourexperimental phototrap has properties different from the the-
experiment is a finite-sized imperfect trap, which allows theoretical perfect point trap model, such as the imperfect trap
dye molecules to escape at a certain, finite probability. Thatrength, finite trap size, and nonuniform trap strength inside
excellent match of the experimental data with the theory irthe trap, we conjecture that the apparently anomalous early-
the long-time range in Fig. (B) suggests that in the time behavior from our experiment comes from the imper-

asymptotic limit the theory for the system with a perfect trapfect nature of the phototrap. We investigate this behavior
is also valid for the one with a finite-sized, imperfect trap. systematically by using a set of numerical simulations with

This is also borne out by simulations below. various techniques, as follows.

B. Anomalous early-time behavior

Figure 2b) also shows that, for short times near the trap
origin, the @ distance grows faster than the asymptotic rate
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g 1p el Rv vV o ¢ Lt at p=0.5 inside the trap, for all trap sizes. Trap sizeasf1 rep-
£ E § ; vV j‘ ** Lt * resents a point trap. Note that the high-slope, early-time behavior
= vV L, + 7 appears only inside the trap for all trap sizes.
] + m P=1
o * +
= = - .
g . + i E:ggs for the case of the imperfect point trap from the Monte Carlo
S " v P B 05 simulations, in which the only apparent difference is the non-
o1l + e Po 0'35 zero, finite reactant concentration at the origin at all times.
+ P=02 We measured thé-distance at#=0.2, 0.4, 0.6, and 0.8
T T e from the profiles in Fig. 3and many more profiles at other
1 10 100 1000 time steps not shownwhich are represented as symbols in

Fig. 4(@). The solid lines are the theoretical slopestf at
the asymptotic limit. Figure @) is a similar plot for an im-

FIG. 5. (a) Spatial concentration profiles at a fixed time step perfect point trap with a trapping probability 0.5 at the trap
t=20, for different trapping probabilities, from recursion formula and zero elsewhere. Both cases, regardless of the difference
calculations, for a point trap in exact 2D. A point trap with a cor- in trap strength, match the theoretical asymptotic scaling
responding trapping probability is located at the center of a 2Dyvery well in the long-time limit, which is consistent with the
square lattice. The horizontal axis represents the distance from thexperimental result in Fig.(B). Furthermore, Fig. 4 shows
trap center. As the trapping probability increases, the particle congirectly that the fast-growing, early-time behavior is repro-
centration becomes lower at and near the trap, leading to thgyced only for the imperfect point trap. For the perfect point
broader depletion zone at a given time. The initiaF Q) concen- trap in Fig. 4a), the @ distance remains almost constant at
tration is normalized to unitytb) A plot of 6 distance vs time, for the first few time steps, then grows faster gradually, until the
different trapping probabilities, at a fixeivalue of 0.7, measured 5y hiqtic growth rate is reached. In this case, the early-time
chgr:l?cgloggenmtratm?n plr Of'les(') (5)5' T,\'Tetdif]hf?r:'ni.reﬁrﬁsems thel slope is always smaller than the asymptotic one, and there is
. asymptolic slope ©.25. Note that the high-siope, earlyy, , region where the depletion zone grows at a faster rate
time behavior appears more clearly as the trapping probability be; . :
comes smaller. tha}n the asymptotic one. On the other hand, for the |m.perfect
point trap in Fig. 4b), the # distance grows at a much higher
rate than the asymptotic one, f6,=0.4 at early times, and
then gradually slows down to the asymptotic rate in the long

Figure 3 shows the normalized concentration profiles as éme range. Such a fast, early-time behavior does not exist
function of the distance from the trap at the origin, obtainedfor the highere values in Fig. 4b), which also matches with
from a Monte Carlo simulation. A trap, with a trapping prob- the experimental observation in Fig(b2 This result sug-
ability 1, is located at a single lattice site on a 2001  gests that the trap strength as well as thealue is an im-
square lattice, while everywhere else on the lattice there iportant factor in the early-time growth of the depletion zone.
zero trapping probability. The initial concentration of the par-  To study the effect of trap strength on the growth of the
ticles is 0.25. The data in the plot represent the results at timdepletion zone more systematically, we performed numerical
stepst=1, 10, 16, 10°, and 10. The particle concentration calculations for various trap strengths, using the recursion
is zero at the origin at all times, reflecting the perfect trap-formula in Table I. Figure &) shows the concentration pro-
ping. We call this trap goint trap, because it occupies only files for different trapping probabilities, at a fixed time step
one lattice site. We obtained similar concentration profiles= 20, for a system where a trap is located at a single lattice

Time (steps)

1. Effect of trap strength
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site on a 2D square lattice. As expected, the particle concen- The results so far suggest that the fast, early-time growth
tration becomes lower in the vicinity of the trap, as the trap-of the depletion zone occurs in systems with an imperfect,
ping strength increases, at a given time. Figufle) Shows finite-sized trap, inside which a certain fraction of particles
the 6 distance measured &t=0.7 from these concentration can exist. As the depletion zone at a certain fraction opens up
profiles. All 6 distances from different trap strengths reachto the “outside” of the trap, thed distance at that specific
the asymptotic scaling af2°, confirming our earlier conclu- fraction becomes bigger than the trap radius, and its growth
sion that the asymptotic behavior does not depend on the tregiows down to converge to the asymptotic rate. Conversely,
strength. However, we note that the fast-growing, early-timeone can determine the effective size of the trap by measuring
behavior appears only at the lower trapping probabilitiesthat ¢ distance where the transition occurs from the early-
i.e., for trapping probabilities below 0.5 in Fig(§. Traps time regime of fast expansion of the depletion zone to the
with higher probabilities do not show such a fast-growing,asymptotic regime. In Fig. (%), for example, the transition
early-time behavior, even though their trapping probability isfrom the higher slope to the asymptotic slope occurs ét a
less than 1. This result suggests that the trap strength canndistance around 0.3, suggesting the “effective” trap size of
completely explain the existence of the fast, early-time bethe point trap in this case to be approximately 0.3.
havior. We find, below, that the trap size is another factor,
which affects the early-time dynamics of the depletion zone.
The difference for6=0.6 in the early-time range between
Figs. 2b) and 4b) can be understood in terms of such an  The phototrap in our experiments, created by focusing the
effect. laser beam, has a nonuniform intensity distribution across the
trap area, most likely with a Gaussian profile. As a final
check on the imperfect nature of the phototrap, we examined
the effect of the trap shape, i.e., the distribution of the trap-
With a closer look at the values of thiedistance in Fig.  ping probability across the trap area, on the dynamics of the
2(b), one realizes that the fast-growing, early-time behaviory distance, using the calculations via recursion formula. Fig-
occurs roughly at & distance below 3—4 pixels. Noting that yres 7a)—7(d) show the concentration profiles obtained from
the radius of the phototraps in our experiments is approxithe exact enumerations for different trap shapes. The inset
mately 60—80um, which corresponds to 3—4 CCD pixels, shows the trap shape. Figuréalis the simplest “point”
one finds that such an anomalous early-time behavior ocCUligap, with p, the trapping probability, being 0.5 at the trap
only insidethe trap. A similar trend is found in the numerical gnd 0 elsewhere. Figuregbj—7(d) represent a “Lorentzian”
results in Figs. @) and 8b), where only those distances  trap, a “Gaussian” trap, and a “rectangular” trap, respec-
smaller than one lattice constant show the fast-growingively. Details of the distribution of the trapping probability
early'time behaVior. Th|S Observation SuggeStS that the traﬂ)r each trap are described in the figure Caption_ By Compar_
size, too, should play an important role in the anomalousing the concentration profiles from different trap shapes, one
early-time behavior. Although the traps in Figébdand 8b)  can notice a common trend: the concentration profiles inside
occupy only a single lattice point, and are thus capetht  the trap resemble the shape of the trap at early times. Then,
traps, it is important to realize that the size of such a poins the concentration inside the trap decreases in time, all
trap is not necessarily zero, because the space is discrete grofiles become convesee Fig. 7c) for the definition of the
the lattice model. In fact, it is reasonable to assume that thgyrvaturd, which is obviously the result of the diffusion of
effective radius of a point trap is about half a lattice distancehe particles from the outside into the trap. In this sense we
in a discrete lattice space. Furthermore, the effective radiughay call the early-time range trapping dominant, and the
of a point trap in lattice space may also depend on the tragng-time range diffusion dominant. This is a special case of
strength. Hence, some of thedistances smaller than 1 in reaction- vs diffusion-limited chemical kineti¢4,15.
Figs. 4b) and 3b) can be regarded as a measure of the \when the trap shape is concave, e.g., the Lorentzian trap
depletion zonensidethe trap. in Fig. 7(b), the curvature of the concentration profile inside
To support the above argument, we carried out numericahe trap changes from concave to convex in time. We find
calculations using the recursion formula, extending the traghat such a curvature change in concentration profile does not
size. The systems examined are traps with various radii, withffect the dynamics of the distance. In fact, we find that the
a uniform trapping probability 0p=0.5 inside the trap, lo- dynamics of thed distance is not affected by the details in
cated on a 2D square lattice. Figure 6 summarizes the resultg,e shape of the trap at all. Theedistance measured from
The figure presents the time evolution of thelistance for Fig. 7(d) is shown in Fig. 8, where the fast-growing, early-
different trap sizes, measured at a fix¢dalue of 0.4, from  time regime appears inside the trap, just like the results in

the recursion formula calculations. Solid lines represent thesigs. 2b), 4(b), and 5b). Similar results were obtained from
upper limit of the radius of each trap studied. The upper limitthe other trap shapes in Fig. 7.

radius of 1 represents a point trap, for which the trap radius
lies between 0 and 1, as explained in the previous paragraph.
It clearly shows that the fast, early-time behavior appears
only below the upper limit of the trap radius. It confirms that  Figure 9a) presents the distance for a perfect trap with
the high-slope, early-time growth of the depletion zone oc-a radius 1, in a continuous 2D space, obtained from the nu-
curs only inside the trap. merical calculations using Eq$4a) and (4b). Solid lines

3. Effect of trap shape

2. Effect of trap size

4. Crossover from 1D to 2D
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FIG. 7. Concentration profiles for different trap shapes. The trap shape is shown as an inset for eactigpdfpeint trap, with a
trapping probabilityp=0.5 at a single lattice sité€b) a Lorentzian trap, wherp=0.5 at the peak position, 0.17 at the nearest neighbor, and
0.050 at the second nearest neighlfora Gaussian trap, whepe=0.5 at the peak position, 0.39 at the nearest neighbor, 0.184 at the second
nearest neighbor, and 0.053 at the third nearest neighbofdaadectangular trap, whepe= 0.5 at all positions inside the trap. The trapping
probability is zero elsewhere. The initial=€ 0) concentration is normalized to unity.

represent the theoretical asymptotic time scaling in 2D. As
| expected, the distance, which is always bigger than the trap
- radius in this case, increases slowly in time, until it reaches
0=08 . the asymptotic slope of/2. There is no fast-growing, early-

:zg'i .' o© time behavior in this case, because the trap is perfect and no

10 |

< »p O N

602 a o particle can survive inside the trap. However, when the

distance is measured from the trap surface, instead of the
center of the trap, we obtain an interesting result, as shown in
Fig. 9b). In this case, the distance starts with a universal
1D scaling oft¥2 for all ¢'s at early times, before it crosses
over to a nonuniversal 2D scaling tf?. This result can be
interpreted as follows. At early times, when the particles are
in the vicinity of a trap, they are affected by only a small part
of the 2D trap surface, as if it was a 1D trap. In other words,
- the particles, located at a much closer distance than the size
1000 of the trap(i.e., the distance from the particles to the trap
Time (steps) surface is much less than the trap $jzme not affected by
the entire shape of the trap. At later times, when the particles
FIG. 8. A plot of ¢ distance vs time for the rectangular trap, are far enough from the trafpe., the distance from the par-
measured from the concentration profiles in Fig)7Dashed lines ticles to the trap surface is much greater than the trap,size
represent the theoretical slopes at the asymptotic time limit in 2Dthe 2D nature of the trap finally affects then, thus changing

v Y

o-distance (lattice units)
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FIG. 10. (a) A plot of the fractiond of the reactants at the trap
surface @) vs Dt/a2, for various values oka in 2D. Solid lines
represent the theoretical values from Eg). The experimental data
with different laser powers are shown as solid squét@smW) and
open circles(130 mW. (b) A plot of 6 vs xa at Dt/a?=6, from
S(a). The value ofxa for each trapping laser power from experi-
ments is determined, as shown by the arrows.

FIG. 9. A plot of the# distance in the unit of the trap radias/s
dimensionless tim®t/a? for the perfect trap with radiua=1, in
spatially and temporally continuous 2D, obtained from Ed®)
and (4b). The 6 distances are measured frda the center of the
trap, which reproduces the results from Monte Carlo simulation
and recursion formula calculations, @) the surface of the trap,
which shows a dimensional crossover from 1D to 2D. The theoret-
ical asymptotif: slopes for 2D are shown as solid lines, and for 1Dance. This prediction can be readily verified from Figo)9
as a dashed line. i.e., the dimensionless crossover tilé,/a? is ~10~2 for

6=0.8, while it is~10 for 6=0.2.
the dynamics accordingly. This argument can be extended to
the case of a spherical trap in 3D as well: the depletion zone
will develop as for th_e _1D case, in the beginning near t_he IV. EXPERIMENTAL DETERMINATION
trap surface, before it is eventu_all_y affected _by the entire OF TRAPPING STRENGTH
sphere and stops growin@D). This is a useful idea to ex-
plain the early-time growth of the depletion zone outside the As a practical application of this study, one can extract the
trap. We note that moving the origin of the coordinate systenvalue of the theoretical trapping efficienay [12] for the
to the edge of the perfect trap system shows the crossover laser phototrap used in the experiments. Trapping efficiency
a more transparent way. Obviously, for a perfect trap it is thés a measure of the trap strength, ranging from zero for no
edge that controls the trapping, with the center not playingrapping to infinity for a perfect trapping. Note that the trap-
any role. ping efficiencyx, with a dimension oflength ", is the con-

According to the above argument, we can also predict théinuous analog of the trapping probability which varies
following: in a given trapping system, the crossover from 1Dbetween 0(no trapping and 1 (perfect trapping The
to 2D (or 3D) occurs faster for large#, because the larggr  reactant concentration at the trap surface depends only on the
distance(corresponding to the larget at a given timg is  trapping efficiencyx [34]. Using the diffusion constant
affected by the entire trap faster than is the smaflatis-  of the reactant(in this case,D=4.37x10 % cn?s ! for

061102-9
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fluoresceir35]), the trap radiug (60—80um), and the con- V. SUMMARY
centrations measured experimentally at the trap surface, one _ _ .
can calculate the trapping efficienoy for a given laser We present experimental evidence for the theoretically

power by comparing with the theoretical values of the reacpredicted nonuniversality in the growth of the depletion zone
tant concentrations at the trap surface, which can be obtaingtt the asymptotic limit in 2D. We find that the trap strength
from Eq.(3). Figure 1@a) is a plot of the concentration frac- does not affect the asymptotic behavior of #eistance. A
tion at the trap surfacedf) vs Dt/a?, for various theoretical fast, early-time behavior is shown to exist inside a finite-
xa values and the experiments with fluorescein using differsized trap with an imperfect trapping strength. The trap shape
ent laser powers. Solid lines represent the theoretical valugdpes not seem to change the dynamics of diiistance. A
calculated from Eq(3), and the experimental data with dif- dimensional crossover was clearly observed when the origin
ferent laser powers for the phototrap are shown as soli@f the ¢ distance measurement was shifted from the trap
squares(12 mW) and open circle$130 mWj. The experi-  center to the trap surface. The theoretical trapping efficiency
mental data follow the theoretical trend very well. Figurewas determined for different laser powers of the phototrap.
10(b) is a plot of 6 vs ka atDt/a?=6, from Fig. 1Ga). The ~ The results are consistent with numerical calculations using
xa value for each laser power is determined to be 1.15 for 1¥arious techniques.

mW and 1.63 for 130 mW, respectively. Considering that the

power density of the laser beam is calculated as 1.1 W/mm

for the 12 mW beam and 6.5 W/nfrfor the 130 mW beam, ACKNOWLEDGMENT
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